A New Metastable Phase of Needle-like Nanocrystalline VO₂ · H₂O and Phase Transformation

Z. Gui,*,† R. Fan,*,† X. H. Chen,*,^{‡,1} and Y. C. Wu†

*Structure Research Laboratory, †Department of Chemistry, and ‡Department of Physics, University of Science and Technology of China, Hefei, 230026, People's Republic of China

Received July 31, 2000; in revised form November 1, 2000; accepted December 1, 2000; published online February 19, 2001

Needle-like nanocrystalline VO₂ · H₂O, crystallized in a new metastable phase with orthorhombic symmetry (a = 6.015, b = 4.642, and c = 3.763 Å), was synthesized by a long hydrothermal reaction from NH₄VO₃ and hydrazine. The structure and composition of these nanocrystallites were characterized by X-ray powder diffraction, transmission electron microscopy, selected area electron diffraction, infrared absorbency spectroscopy, and thermogravimetric analysis. The influence of chemical reaction conditions on the features of the final products was investigated, and the optimum conditions were found to be 170°C for 15 days with a N₂H₄ concentration of 8.0%. Differential scanning calorimetry was conducted to study the phase transformation from as-prepared metastable VO₂ · H₂O to the more stable (B)VO₂ and rutile-type VO₂. © 2001 Academic Press

Key Words: novel phase; $VO_2 \cdot H_2O$; hydrothermal synthesis; phase transformation.

INTRODUCTION

The binary vanadium oxides, VO_x ($1 \le x \le 2.5$), exhibit a wide variety of structure types (1). Many of them are of technological importance with uses in oxidation catalysis (2), high-energy density battery electrodes (3), etc. These oxides also show interesting electronic properties, from metallic behavior in some VO₂ polymorphs to semiconducting behavior in V₂O₅. The rutile-type VO₂ displays a metal-insulator transition with increasing temperature (4, 5).

VO adopts a cubic rock salt structure, which contains a high percentage of defects. V_2O_3 adopts a structure similar to that of corundum (6). Monoclinic crystalline V_3O_5 was reported by Asbrink *et al.* (7). Vanadium also forms a number of binary oxides of the general formula V_nO_{2n-1} $(4 \le n \le 8)$ and V_nO_{2n+1} (n = 3, 4, and 6) (8). The former are known as triclinic Magneli phases (9). The most oxygen-rich phase, V_2O_5 , has been characterized with a layered structure, which can be reduced by intercalation reactions to derive novel materials (10). Six phases of VO_2 are known; so far to our knowledge. Rutile-type VO₂, crystallized in the space group P4/mmm, is the thermodynamically most stable phase (11). And ersson discovered a monoclinic $P2_1/c$ phase of VO_2 , (12) and a structurally similar triclinic VO_2 phase has also been identified (13). The three phases of VO_2 are interconverted in the temperature range from 325 to 340 K. A pioneering work on soft chemical routes to metastable phases of VO_2 or its hydrates was carried out by Theobald (14). $(A)VO_2$ was precipitated at a hydrothermal reaction temperature between 220°C and 330°C from a suspension of V₂O₃ and V₂O₅. Oka et al. determined its structure to be of tetragonal symmetry (a = 11.90 and c = 7.68 Å) (15). In this experiment, (B)VO₂ and rutile VO₂ were obtained below 220°C and above 330°C, respectively. (B)VO₂ also exists as an intermediate in the course of the thermal reduction of V_2O_5 by H_2 or SO_2 gas (16). It has a layered structure and shows good performance as an anode host for rechargeable lithium cell with aqueous electrolytes (17). Recently, Hagonman et al. prepared a new layered polymorph of VO₂ designated (C)VO₂ (18). Its hydrate $VO_2 \cdot 1/2H_2O$ has a structure analogous to that of recognized $\operatorname{Li}_{x} V_{2-\delta} O_{4-\delta} \cdot H_{2} O$. Several intermediate metastable phases, such as $V_2O_5 \cdot H_2O$ and $V_3O_7 \cdot H_2O$, have been identified (19, 20).

Herein we report the synthesis of a novel metastable phase of VO₂ \cdot H₂O by hydrothermal reaction of NH₄VO₃ and N₂H₄, which acts as a reducing agent and also could allow control of the size and morphology. The products obtained hydrothermally were comprised of phase-pure needle-like nanocrystallites. The phase transformation from as-prepared VO₂ \cdot H₂O upon heating to 620°C has been investigated.

EXPERIMENTAL

Synthesis. All the starting materials were of analytical purity (A.R.) grade, and were obtained from commercial

¹To whom correspondence should be addressed.

sources. NH₄VO₃ (1.11 g) was put into a Teflon-lined stainless steel autoclave with a capacity of 80 ml, and dissolved with distilled water (~ 60 ml) up to 75% capacity. An appropriate amount of hydrazine monohydrate ($N_2H_4 \cdot H_2O$) was added to this solution to give an 8.0% N₂H₄ aqueous solution. Immediately, a deep-colored solution formed due to the reduction of vanadium(VI). We then added $NH_3 \cdot H_2O$ to control the pH value at ~9.2. The autoclave was sealed and maintained at 170°C and autogenerated pressure for 15 days. The reaction solution was neither shaken nor stirred during the heating period. The resulting black precipitate was collected by filtering, washed with distilled water many times, and then dried in vacuum at 70°C for 5 hours. To investigate the effect of reaction conditions on the features of the final products, a series of experiments with various temperatures, heating durations, and concentrations of N_2H_4 were carried out.

Characterization of structure, composition, and morphology. X-ray powder diffraction analysis (XRD) was conducted out on a Rigaku D/Max X-ray diffractometer at a scanning rate of 0.05 degree per second with 2θ ranging from 5 to 65 degrees, using graphite monochromated CuK_{α} radiation ($\lambda = 1.5418$ Å). The PC programs Treor and Fullprof (the LeBail method) (21) were employed to solve the structure according to powder XRD data. A transmission electron microscope (TEM) operated at 200 kV was employed to characterize the morphology of the products. Images were collected in a bright field. Copper grids (300 mesh) coated with an amorphous carbon film were obtained commercially. Samples were prepared by placing drops of diluted ethanol with dispersed nanocrystallites on the surface of grids. At the same time, the electron diffraction pattern (ED) was recorded with typical crystallites observed. The compositions of the samples were determined by thermogravimetric analysis (TG) combined with X-ray energy dispersive spectroscopy (EDS). Infrared spectroscopy (IR) was recorded in a KBr matrix. Redox titration was conducted to determine the oxidation state of vanadium on the basis of the following method. First, a definite amount of as-prepared sample was dissolved quickly in $60 \text{ ml of } 1.7 \text{ M H}_2\text{SO}_4$ solution operating under a N₂ atmosphere. The obtained solution was designated Sol(I). The concentration of standard KMnO₄ solution was determined by titrating with $Na_2C_2O_4$. The valence difference between the oxidation states of vanadium in the as-prepared sample and in completely oxidized V(VI) in VO_2^+ ions in the resulting solution could be determined by titrating Sol(I) with the standard KMnO₄ solution. With the addition of KMnO₄, the color of Sol(I) became yellow gradually. A sudden color change from light yellow to deep orange indicates the titration endpoint. In order to understand the evolution of phases upon heating, the as-prepared samples were subjected to differential scanning calorimetric analysis (DSC) in a flowing high-purity N_2 atmosphere in a temperature range from 30°C to 620°C.

RESULTS AND DISCUSSION

The sample of vanadium oxide hydrate obtained hydrothermally at 170°C for 15 days was characterized by XRD analysis. Its XRD pattern shown in Fig. 1a indicates its good phase purity, and is nearly identical to the simulated pattern shown in Fig. 1b obtained by using the LeBail method (using the PC program Fullprof) (21) in the space group P222. All the diffraction peaks could be indexed on the basis of orthorhombic symmetry. Simulation of the XRD pattern gave the lattice parameters a = 6.015, b = 4.642, and c = 3.763 Å. Other crystal symmetries, e.g., tetragonal and monoclinic systems, were also studied, but they did not lead to improved results, and have larger $R_{\rm wp}$ values than this orthorhombic unit cell. A TEM image for the sample obtained hydrothermally is shown in Fig. 2a. It indicates that the sample of VO_2 hydrate comprises needle-like nanocrystallites ($7 \text{ nm} \times 35 \text{ nm}$). Figure 2b shows an electron diffraction pattern with the incident beam perpendicular to the needle-like crystallite axis. These spots sit well on the intercross sites of a rectangular network with the angle 90°. The corresponding d-spacing values were calculated for indexing the ED pattern. The observed (001) spot has a d value of 3.74 Å, close to the c = 3.763 Å from the LeBail simulation of the XRD pattern. The observed d-spacing of (120) planes is 2.18 Å, which is also in very good agreement with the d value of 2.17 Å calculated with the cell parameters a = 6.015 and b = 4.642 Å obtained from the

FIG. 1. Observed (a) and simulated (b) X-ray powder diffraction patterns for the sample of $VO_2 \cdot H_2O$ obtained hydrothermally.

FIG. 2. (a) TEM image and (b) the corresponding electron diffraction pattern for the sample of $VO_2 \cdot H_2O$.

LeBail simulation of the XRD data. Therefore, the ED and XRD results are highly consistent and support the crystal symmetry as well as the calculated cell parameters. The (002) diffraction spot shows a weak "splitting" in the ED pattern, but the median point of the two "split" spots does not sit on the ideal (002) site; instead the relatively bright spot dwells well on this site. Thus, the observed "splitting" does not suggest the existence of a supperlattice and some kind of structural order. Actually, the as-prepared samples of vanadium oxide hydrates were found to be unstable under irradiation by an electron beam. So we attribute this "splitting" to a tiny structure change induced by the electron beam. Due to the great difficulty in preparing a highly crystallized sample of the title compound, the XRD data are not good enough to allow for Rietveld refinement.

The infrared spectrum for the sample obtained as shown in Fig. 3 indicates the existence of bound water and various V-O vibrations. The peak at 993 cm⁻¹ was attributed to the stretching vibration v(V=O) of the short-range order between vanadium and oxygen atoms. Another peak at 570 cm^{-1} showed the long-range stretching vibration v(V-O-V). An evidence for the bound water is the strong broad absorbency peak around 3440 cm⁻¹ corresponding to the stretching vibration v(O-H) and a medium peak at 1633 cm^{-1} corresponding to the deformation vibrations δ (O–H) between oxygen and hydrogen atoms. TG analysis conducted in flowing N2 atmosphere shows a weight loss of $\sim 15\%$ up to 400°C, which is related to the procedure of dehydration. After the dehydrated sample was reheated in air for 12 hours, the resulting orange-colored solid was characterized as V₂O₅. According to the weight loss in dehydration and the weight increase in the following reheating, the chemical formula for the sample obtained hydrothermally can be determined as $VO_2 \cdot H_2O$. The valence

of vanadium in this sample was calculated to be +4 on the basis of the chemical formula. Redox titration was conducted to give a direct evidence for its oxidation state. According to the amount of KMnO₄ required for the titration, the difference between the oxidation state of V in the as-prepared sample and the +5 valence in the resulting VO₂⁺ ions is 1.06. So the oxidation state of V in this sample is +3.94, very close to the theoretical value of +4. In addition, an EDS spectrum was recorded for the nanocrystallites of VO₂ · H₂O. It indicates the existence of V and O (H cannot be detected this way) without any impurities such as elemental N.

In the experiment, we found that the formation of metastable $VO_2 \cdot H_2O$ strongly depends on the chemical reaction conditions: temperature, duration, and amount of reducing agent N₂H₄. The results of a series of experiments under various conditions are listed in Table 1. It reveals that the elevated temperature of 220°C favors the formation of thermodynamically stable rutile-type VO₂, and this novel metastable $VO_2 \cdot H_2O$ should be prepared at a temperature as low as 170°C. The reaction duration must be controlled carefully to generate a single-phase $VO_2 \cdot H_2O$, because a well-developed crystalline $VO_2 \cdot H_2O$ must be produced over a long reaction time, while an exceedingly long duration leads to the conversion of metastable $VO_2 \cdot H_2O$ to rutile VO2. The amount of reducing agent N2H4 also influences the final products remarkably. A low N2H4 concentration of 1.5% gives a poor-crystalline VO2 · H2O after 7 days, but it completely converts to rutile-type phase after 15 days. The high N₂H₄ concentration of 8.0% results in single-phase $VO_2 \cdot H_2O$ from 3 days to 15 days. Generally the longer the duration, the higher the crystallity of products obtained. The effects of much higher concentrations of N₂H₄ up to 65% were also investigated, but the resulting products did not differ from the previous samples. The

FIG. 3. Infrared spectrum of the sample of $VO_2 \cdot H_2O$.

 TABLE 1

 Final Products of the Hydrothermal Reaction of NH₄VO₃ and N₂H₄ under Various Chemical Conditions

Sample no.	Temp (°C)	Duration (days)	Concentration of N_2H_4 (%)	Final product obtained hydrothermally
1	170	7	8.0	Poor-crystalline $VO_2 \cdot H_2O$
2	170	15	8.0	Good-crystalline VO2 · H2O
3	220	7	8.0	Rutile-type VO ₂
4	220	15	8.0	Rutile-type VO ₂
5	170	7	1.5	Poor-crystalline $VO_2 \cdot H_2O$
6	170	15	1.5	Rutile-type VO ₂
7	170	15	65	Good-crystalline $VO_2 \cdot H_2O$

optimum condition for preparing the novel $VO_2 \cdot H_2O$ should be controlled at 170°C for 15 days with the starting N_2H_4 concentration of 8.0%.

The reducing agent N_2H_4 is used not only to generate a reducing atmosphere for the formation of reduced vanadium oxides, but perhaps also plays a key role in the control of the micromorphology. In our experiment, welldeveloped needle-like quasi-1-D nanocrystallites were prepared. A mechanism of molecular coordination and assembly via a vanadium-hydrazine complex as a building block can be suggested to explain the growth of the needle-like nanocrystallites, while other reducing agents, such as KBH₄ (17) and NH₃OHCl (22), give only amorphous or irregular poor-crystalline products. Due to the difficulty in *in situ* detection of an intermediate in a sealed autoclave, the reaction mechanism will be investigated further.

To understand the evolution of phases of $VO_2 \cdot H_2O$ upon heating, the as-prepared samples were subjected to thermogavimetric analysis (TG) and differential scanning calorimetry (DSC) in a flowing N₂ atmosphere. The TG plot shown in Fig. 4a exhibits a weight loss of $\sim 15\%$ corresponding to the loss of bound water. A portion of this sample was subjected to DSC; the recorded curve is shown in Fig. 4b. We see a very broad exothermic peak centered around 555°C. In order to understand the nature of the transformation associated with the DSC peak, we heated a portion of as-prepared $VO_2 \cdot H_2O$ at various temperatures and examined the products by room-temperature X-ray powder diffraction. Figure 5a shows the diffraction pattern of the original sample $VO_2 \cdot H_2O$ which was indexed on the basis of orthorhombic symmetry. The XRD pattern for the sample after heating in the temperature range from 300°C to 520°C for 24 hours shows the disappearance of the metastable phase $VO_2 \cdot H_2O$ and the formation of (B)VO₂ and rutile-type VO_2 gradually. The two weak DSC peaks around 325°C and 375°C may correspond to the transformation to $(B)VO_2$ and rutile-type VO₂, respectively. But, because no sharp exotherm peaks were observed, these transformations may occur over a wide temperature range.

FIG. 4. TG and DSC curves for the sample of $VO_2 \cdot H_2O$ between 30 and $620^{\circ}C$.

This phase transformation temperature is consistent with the previous report (17). Another portion of $VO_2 \cdot H_2O$ was heated at an elevated temperature of 620°C; its XRD pattern shown in Fig. 5b reveals the existence of both (*B*)VO₂ and rutile-type VO₂ of higher crystallity. Previous literature (17) pointed out the transformation of (*B*)VO₂ to rutile-type VO₂ around 350°C, and a complete conversion around 500°C. However, the (*B*)VO₂ obtained by heating metastable VO₂ \cdot H₂O shows higher thermal stability and still appears up to 620°C. Additionally, a weak endothermic peak around 85°C may correspond to the loss and evaporation of bound water.

FIG.5. X-ray diffraction pattern for the sample (a) obtained hydrothermally and (b) after heating $VO_2 \cdot H_2O$ at 620°C for 24 hours in a highpurity N_2 atmosphere.

CONCLUSION

A long hydrothermal reaction of NH₄VO₃ and N₂H₄ generated needle-like nanocrystalline VO₂·H₂O in a new orthorhombic metastable phase with lattice parameters a = 6.015, b = 4.642, and c = 3.763 Å, demonstrated by EDand XRD analysis. The formation of the $VO_2 \cdot H_2O$ phase strongly depends on the chemical reaction conditions of temperature, duration, and the amount of reducing agent N_2H_4 . N_2H_4 could also be responsible for the control of the micromorphology of products. When the sample of $VO_2 \cdot H_2O$ is heated, it will transform to relatively more stable $(B)VO_2$ and rutile-type VO_2 . Nanocrystalline transition metal oxides, such as VO₂, MnO₂, and their hydrates, were reported to show good performance as electrodes of high-energy density batteries (17). Herein, we prepared a new metastable phase of $VO_2 \cdot H_2O$ forming needle-like nanocrystallites that may find applications in the field of electrochemistry.

ACKNOWLEDGMENTS

This work was supported by a grant from the Natural Science Foundation of China.

REFERENCES

 J. B. Goodenough and A. Hammett, "Landolt-Bernstein New Series Group III: Semiconductor," Vol. 17, Subvol. G, pp. 129–291, 1984.

- J. Miki, Y. Osada, T. Konoshi, Y. Tachibana, and T. Shikada, Appl. Catal. A 137, 93 (1996).
- 3. W. Li, J. R. Dahn, and D. S. Wainwright, Science 264, 1115 (1994).
- 4. F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
- 5. S. Minomura and H. Nagasaki, J. Phys. Soc. Jpn. 19, 131 (1964).
- 6. R. E. Newnham and Y. M. De Haan, Z. Kristallogr. 117, 235 (1962).
- S. Asbrink, S. Friberg, A. Magneli, and G. Anderson, *Acta Chem. Scand.* 13, 603 (1959).
- J. Twu, C. Shih, T. Guo, and K. Chen, J. Mater. Chem. 7, 2273 (1997).
- H. Horiuchi, N. Morimoto, and M. Tokonami, J. Solid State Chem. 17, 407 (1976).
- E. A. Boylan, T. Chirayil, J. Hinz, P. Y. Zavalij, and M. S. Whittingham, Solid State Ionics 75, 257 (1995).
- 11. G. Andersson, Acta Chem. Scand. 8, 1599 (1954).
- 12. G. Andersson, Acta Chem. Scand. 10, 623 (1956).
- 13. T. Metsuishi, Jpn. J. Appl. Phys. 6, 1060 (1967).
- 14. F. Theobald, J. Less-Common Met. 53, 55 (1977).
- Y. Oka, T. Tao, and N. Yamamoto, J. Solid State Chem. 86, 116 (1990).
- F. Theobald, R. Cabala, and J. Bernald, J. Solid State Chem. 17, 431 (1977).
- 17. C. Tsang and A. Manthiram, J. Electrochem. Soc. 144, 520 (1997).
- D. Hagrman, J. Zubieta, C. J. Warren, L. M. Meyer, M. J. Treacy, and R. C. Haushalter, J. Solid State Chem. 138, 178 (1998).
- S. A. Selim, Ch. A. Philip, and R. Ch. Mikhait, *Thermochim. Acta* 36, 287 (1980).
- 20. C. L. Onnerud and J. O. Thomas, J. Mater. Chem. 5, 1075 (1995).
- "Fullprof" (J. Rodriguez-Carvajal, Ed.), Version 3.5d, Laboratoire Leon Brillouin, CEA-CNRS, Oct 1998.
- 22. V. Manivannan and J. B. Goodenough, *Mater. Res. Bull.* 33, 1353 (1998).